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ABSTRACT (1995) analyzed yield transects in a 4-yr corn–soybean
[Glycine max (L.) Merr.] rotation in Iowa. They foundData were analyzed from two 30-ha laser-leveled commercial fields
a high level of variability in most areas but did notin the Sacramento Valley, California, for crops grown between 1995

and 1999. Crops were wheat (Triticum aestivum L.), tomato (Lycoper- specifically quantify this variability statistically. One
sicon esculentum Mill.), bean (Phaseolus vulgaris L.), sunflower (He- means of characterizing interannual variability is through
lianthus annuus L.), and corn (Zea mays L.). One of the fields had correlation and regression analysis. Huggins and Alder-
a wheat–tomato–bean–sunflower rotation while the other had a fer (1995) used multiple regression to study the effects
wheat–tomato–sunflower–corn rotation during the same period. Yield of various factors on yield variability in a 34-yr small-
data were collected with a commercial yield monitor, except for to- plot–based study of corn fertility. They reported that
mato yield data, which were collected with an experimental yield

67% of the variation was explained by climatic and othermonitor. After georeferencing, interpolation, and correction of yield-
factors while only 8% was explained by site variability.monitored data, analysis was performed on grid cells representing an
Sadler et al. (1995, 1998) analyzed yield sequences inarea of 20-m square. Soil cores were extracted from the fields on a
corn, wheat, and soybean plots. Interannual yield corre-60-m square grid. Yield and sand content were both separated into

large- and small-scale components by median polish. Persistent large- lations were statistically significant although the coeffi-
scale trends in yield, which were consistent with large-scale trends in cients of determination were fairly low. Lamb et al.
sand content, were observed. Six 2-yr comparisons via linear regres- (1996, 1997) observed similar results in a 6-yr sequence
sion were performed in each field. Yield of one crop was a poor of corn and corn–soybean systems. Jaynes and Colvin
predictor of yield of another crop grown in another year, but after (1997) studied spatial patterns in a 4-yr corn–soybean
standardizing and averaging the yields, areas with the same average rotation using median polish and variogram analysis.
performance tended to be clustered together spatially. The standard-

Lark and Stafford (1997) and Lark et al. (1997) usedized yields were also analyzed using K-means clustering. This provided
fuzzy clustering to divide an experimental field intoa different spatial configuration of clusters from that of the standard-
regions characterized by similar yield trends.ized average but also a high level of spatial autocorrelation, which

Crop response to environment at the field scale is ashows that both methods may be helpful in delineating management
zones at the scale normally used by growers. dynamic process involving the interaction of spatial and

temporal effects. One conceptual model that has been
put forth for such processes as a means of organizing
their complexity is to consider the data as consistingPrecision agriculture, or site-specific management
of the sum of two additive components: a large-scale(SSM), involves the management of the crop at a
deterministic process that is considered primarily reac-spatial scale smaller than that of the field. It depends
tive in nature and a smaller-scale stochastic process thaton understanding the processes and factors that regulate
is considered primarily interactive in nature (Cliff andcrop responses to within-field variability and on being
Ord, 1981, p. 222; Cressie, 1991, p. 25; Isaaks and Srivas-able to predict the spatial pattern of yield response to
tava, 1989, p. 531). The terms “reactive” and “inter-these factors. The practical implementation of SSM has
active” are used here in the sense of Cliff and Ord (1981,been greatly facilitated by the introduction of commer-
p. 141). Briefly, reactive processes are those in whichcial yield monitors that permit the measurement and
yield variability is primarily due to reaction to an exter-analysis of yield distribution at a spatial distribution on
nal, spatially varying agent while interactive processesthe scale of meters. Data collected from these yield
are those in which the primary cause of spatial variabilitymonitors, and supplemented by other agronomic data
is spatial interaction of the process itself. Jaynes andof varying types, provide the opportunity to analyze the
Colvin (1997) used the technique of median polish (Em-spatial distribution of yield and to relate it to the spatial
erson and Hoaglin, 1983; Cressie, 1991) to separate thedistribution of agronomic factors at a previously unat-
spatial data into a large-scale trend and a small-scaletainable level of precision at the commercial field scale.
stochastic structure. Although no biological or physicalA number of researchers have examined interannual
interpretation of the results of the median polish processvariability in yield spatial distribution. Colvin et al.
is necessary for the statistical analysis, the reactive and/
or interactive model given above is consistent with aJ.F. Perez-Quezada, Graduate Group in Hortic. and Agron., G.S.
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is therefore of interest for two reasons: empirically, to
determine the extent to which it facilitates data analysis,
and fundamentally, to determine the extent to which it
can be used to model the process of crop interaction
with environment.

This paper examines different methods for analyzing
spatial and temporal patterns of soil characteristics and
yield at the field scale, using data from a 4-yr study of
two commercial fields in California. The fields in this
study are typical of those found in the lower Sacramento
and upper San Joaquin Valleys where crop rotations
include grains, vegetables, legumes, and oilseeds. We

Fig. 1. Monthly precipitation recorded at the California Irrigation
examine the use of trend analysis to study both crop Management Information System weather station at Winters, CA,
and soil variability. We also compare various methods October 1995 through September 1999. Precipitation is measured

by season from 1 October through 30 September. Dark bars indi-for characterizing the interannual relationship of crop
cate months in which a crop was grown in the two fields. The firstyield values. Our objective is to determine whether spa-
crop was grown in the winter (November– May), and the rest weretiotemporal yield variability can be statistically charac- grown in the summer (April– October). Total precipitation in each

terized. We analyze interannual relationships of yield season was as follows: 1995–1996, 822 mm; 1996–1997, 683 mm;
1997–1998, 967 mm; and 1998–1999, 423 mm.data and the relationship of yield to soil physical charac-

teristics of the field.
Before analysis, yield data were aggregated to a grid of 20-

by 20-m cells, where each cell value represented the averageMATERIALS AND METHODS
of all points contained within that 20- by 20-m square. This

Both fields subject to study are commercially managed in process was performed using the same mask coverage each
the Sacramento Valley, California (38�32� N, 121�58� W). The year so that the grids were coincident, which permitted the
fields are identified in this study following the grower’s num- comparison of yields for different years in the same locations.
bering system as Fields 5 and 58. Field 5 is made up of three Data manipulation was performed using ArcView and Arc-
soil types, Capay silty clay (fine, smectitic, thermic Typic Info (ESRI, Redlands, CA). Sample statistics were computed
Haploxerepts), Brentwood silty clay loam (fine, smectitic, using standard procedures (Steel and Torrie, 1980). Median
thermic Typic Haploxerepts), and Yolo silty loam (fine-silty, polish (Cressie, 1991) was performed as described by Jaynes
mixed, superactive, nonacid, thermic Mollic Xerofluvents). and Colvin (1997). Analysis was performed using Excel (Mi-
There is a textural gradient of increasing clay content from crosoft, Redmond, WA), SAS (SAS Inst., Cary, NC), and
the south end (Yolo) to the north end of the field (Capay). Minitab (Minitab, State College, PA). Experimental vario-
Field 58 has two soil types, Brentwood silty clay loam and grams and autocorrelation statistics were computed using Va-
Rincon silty clay loam (fine, smectitic, thermic Mollic Haplox- riowin (Pannatier, 1996), GS� (Gamma Design Software,
eralfs). Both fields are 30 ha in area, and their linear dimen- Plainwell, MI), and the statistical package of Lee and Wong
sions are approximately 400 by 800 m, with the long axis of (2001).
Field 5 running in the north–south direction and that of Field Cluster analysis was performed using Statistica (StatSoft,
58 in the east–west direction. Both fields have been laser- Tulsa, OK). Before this analysis, yields were standardized
leveled. The climate is Mediterranean, with an average annual using the formula:
rainfall of 550 mm, almost all of which occurs during the
winter. Precipitation during the winter of 1995–1996 was Ys � �Yi � Y

SD � � 100
822 mm, which represents 150% of normal. This occurred
during the first year of the study and affected the winter wheat

where Yi is the yield for the ith cell, Y is the average yield,crop grown that season (Fig. 1). During the remaining years,
and SD is the standard deviation of that particular crop-year.the farmer grew summer crops so that annual precipitation
Analysis was performed using K-means clustering, which ishad less effect in this fully irrigated production system. Soil
an algorithm based on the square-error clustering methodsamples to a depth of 30 cm were taken in the first year using
(Jain and Dubes, 1984). In this method, each sample is assigneda 60-m grid, resulting in 86 samples in Field 5 and 78 samples
to one of K clusters so that the variance within clusters isin Field 58. A detailed description of the measurement proce-
minimized and the variance between clusters is maximized.dures is given by Plant et al. (1999).
The K-means algorithm achieves this by recalculating theThe experiment was conducted from 1995 through 1999.
mean of each cluster every time a sample is assigned to it.Crops grown in the fields during this period were wheat, to-
The K-means clustering purposefully excluded spatial infor-mato, bean, sunflower, and corn. Field 5 had a wheat–tomato–
mation so that spatial relationships of the cluster sets couldbean–sunflower rotation, whereas Field 58 had a wheat–
be analyzed statistically.tomato–sunflower–corn rotation. The southern portion of

To obtain a temporal trend analysis, data were standardizedField 5 was removed from the study in the 1998 and 1999 using a formula based on a similar analysis of Blackmoreseasons when the grower used it for different crops. Grain (2000):and oilseed crops were harvested with a combine equipped
with an Ag Leader GPS yield-mapping system (Ag Leader

Ys,i � �Yi
Y � � 100Technol., Ames, IA), and tomato was harvested with an exper-

imental tomato yield monitor. Yield data were collected once
per second. In some years, it was not possible to get full GPS where Ys, j is the standardized yield value of the cell. By adding
coverage, so data were missing from some parts of the fields the standardized yields, a statistic called the sumscore was

calculated. This represents the average standardized yield overin some years.
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the 4-yr period. To characterize the temporal stability, working RESULTS
also with the standardized yields, the coefficient of variation

Figures 2 and 3 show yield maps for the two fields,(CV) over years was calculated for each cell as in Blackmore
with data aggregated to a 20-m grid as described in(2000), using the 4 yr of data.
the Methods section. Table 1 shows correspondenceMultiple-regression analysis was performed in which yield
between basic statistical values of original yield datawas the response variable and relatively persistent soil quanti-
sets and aggregated data sets used in our analyses. Asties measured at the start of the experiment were predictors.
usual with a change of support (Isaaks and Srivastava,We attempted a regression tree analysis similar to that which
1989, p. 190), the mean values were little affected whilePlant et al. (1999) performed on the first year’s data. However,
the standard deviation decreased considerably. The de-possibly because of the reduced number of data values avail-
crease in CV was least for wheat, indicating that yieldable for the full 4-yr sequence of crops, the analysis was not
data for that crop had the least short-range variability.successful. The regression tree grew only one node pair for
The values obtained for the reclassified data sets demon-the data of Field 5 and was unable to grow any nodes for the

data of Field 58. strate the smoothing effect of aggregating and the re-

Fig. 2. Reclassified yield maps in Field 5 of (a) wheat, (b) tomato, (c) bean, and (d) sunflower. Yield values are in kilograms per hectare, and
the linear dimensions of the field are approximately 400 by 800 m. Gaps in coverage are due to loss of GPS signal during harvest. Note that
the southern portion of the field was not in the experiment in the bean and sunflower years.



PEREZ-QUEZADA ET AL.: SPATIAL–TEMPORAL YIELD ANALYSIS 679

moval of outliers, which relates to the sensitivity of out the field. However, this would be possible only for
the crop-years in which the data set was complete (seethe standard deviation to extreme values. When the

reclassified mean yield values were compared with those Fig. 2 and 3). Because the primary interest of this work
was spatial yield distribution rather than absolute yieldthe grower registered from net truck weights, the differ-

ences ranged from 0.6 to 81% (Table 2). The monitored values, we worked with uncorrected data, which as-
sumes that the spatial patterns delineated by the yieldyields could in principle be corrected directly by assum-

ing that the truck weights were correct and that the monitor were correct.
Field 58 exhibited a generally higher yield and ayield monitors worked with the same calibration through-

Fig. 3. Reclassified yield maps in Field 58 of (a) wheat, (b) tomato, (c) sunflower, and (d) corn. Yield values are in kilograms per hectare, and
the linear dimensions of the field are approximately 400 by 800 m. Gaps in coverage are due to loss of GPS signal during harvest.
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Table 1. Basic statistics of monitored yield data before and after aggregation on a 20- by 20-m grid for both fields.

Before aggregation After aggregation

Field Crop (year) Data points Mean SD† CV‡ Cells Mean SD CV

kg/ha % kg/ha %
5 Wheat (1996) 35 816 2 931 1 483 50.6 776 2 927 1 375 50.0
5 Tomato (1997) 17 048 71 041 27 472 38.7 714 69 525 18 990 27.3
5 Bean (1998) 16 716 1 282 512 39.9 545 1 304 374 28.7
5 Sunflower (1999) 22 928 2 034 414 20.4 707 2 012 202 10.0
58 Wheat (1996) 38 159 4 445 1 615 36.3 780 4 428 1 447 32.7
58 Tomato (1997) 12 137 81 549 37 153 45.6 566 82 583 19 448 23.5
58 Sunflower (1998) 25 694 2 800 543 19.4 780 3 048 399 13.1
58 Corn (1999) 25 020 13 211 4 347 32.9 780 13 912 2 392 17.2

† SD, standard deviation.
‡ CV, coefficient of variation.

higher degree of spatial homogeneity (Table 1). The median soil sand content in Field 5 is in the north–south
direction while in Field 58, it is in the east–west directioncauses of wheat yield variability in Year 1 were exam-

ined earlier by Plant et al. (1999), who attributed it (i.e., the long axis of each field). Further support is
provided by computing the extra sums of squares forprimarily to aeration stress in Field 5 and weed competi-

tion in Field 58. These results corresponded with the sand content for the first-order regression model (not
shown). For this reason, after computing the two-dimen-observations of the cooperating grower, who was famil-

iar with the trend toward heavier soil in the north end sional trend using median polish, we computed the me-
dian of these trend values over the short axis of eachof Field 5.

Table 3 shows summary statistics of soil properties in field. Figure 4 shows the medians across the short axes
of the median polish values for each of the fields. Theboth fields. Because silt content was roughly constant,

sand and clay content more or less summed to a con- figure indicates that Field 5 has a slightly larger overall
trend than Field 58 and that the trend in Field 5 tendsstant. The most variable component in each field was

sand content, which showed a slightly greater range of to be concentrated at the south half of the field while
that of Field 58 is spread across the entire field.variation in Field 5 than Field 58. A preliminary partial

Mantel correlation test (Smouse et al., 1986) indicated Figures 5 and 6 show the results of trend separation
through median polish of the yield data. For ease ofno difference in the level of significance for the relation

between sand and yield vs. the relation between clay visualization, the figures show the median across the
short axis of the trend surface, similar to Fig. 4. Theand yield. Therefore, we elected to use sand content as

an index of texture because of its greater variability. close correspondence of the wheat yield trend in Field
5 to sand content and the parabolic nature of the tomatoTrend analysis of soil sand content was performed using

both the median polish (Cressie, 1991) and polynomial yield in this field are visually apparent. Because of the
lack of data, trend surfaces for bean and sunflower incurve fit (Cliff and Ord, 1981) methods.

Fitting the percentage sand data with second-degree Field 5 were only computed in the north end of the field
and show a slightly decreasing northward trend, as doespolynomial trend surfaces resulted in the equation per-

centage sand � 43.3 � 0.0239x � 0.0849y � 0.000007x2 � wheat yield in this field. In Field 58, the pronounced
effect of weeds on wheat yield variability is manifested0.000056xy � 0.000076y2 for Field 5 and the equation

percentage sand � 35.0 � 0.0443x � 0.0025y � in two large areas of low yield in the western half of
the field (Fig. 2a), and there is a small increasing trend0.000036x2 � 0.000003xy � 0.000050y2 for Field 58. The

variables x and y measure position in the field in meters. in sunflower and corn yields in the easterly direction.
Similar to the observation of Jaynes and ColvinTable 4 shows the sums of squares and p values for each

of the spatial components for each field. Due to the (1997), we found that the residuals from the median
polish of the yield data had a distribution significantlyspatial autocorrelation of the data, these p values are

unreliable and generally underestimated. The results of different from normal although unlike those reported
by Jaynes and Colvin, they were not highly skewed. Wethe trend surface analysis, however, support the inter-

pretation that the dominant median trend of variation in employed two iterations of a winsorizing process on

Table 2. Comparison of average yields reported by the grower and those obtained through yield-monitoring (after aggregation procedure).

Yield from
Humidity Yield measured monitored yield

Field Crop (year) at harvest by the grower data Difference

% kg/ha %
5 Wheat (1996) 11 3 298 2 927 �11.2
5 Tomato (1997) 94 58 586 69 525 18.7
5 Bean (1998) 9 1 400 1 304 �6.9
5 Sunflower (1999) 9 1 572 2 012 28.0
58 Wheat (1996) 11 4 498 4 428 �1.6
58 Tomato (1997) 94 75 121 82 583 9.9
58 Sunflower (1998) 9 1 683 3 048 81.0
58 Corn (1999) 15 13 823 13 912 0.6
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Table 3. Mean, maximum, minimum, standard deviation (SD), and coefficient of variation (CV) of soil variables.

Field Variable No. of points Avg. Max. Min. SD CV

%
5 pH 86 5.8 6.0 5.6 0.1 2.1
5 Sand 86 25.3 44.6 17.3 6.6 26.0
5 Clay 86 37.3 41.5 23.2 6.3 16.8
5 Silt 86 37.5 42.8 30.8 2.4 6.3
5 SOM† 86 2.0 2.5 0.8 0.3 17.3
58 pH 78 5.6 5.9 5.4 0.1 1.6
58 Sand 78 27.4 45.5 17.3 5.9 21.7
58 Clay 78 33.9 46.1 23.2 4.5 13.3
58 Silt 78 38.7 48.1 25.1 4.0 10.3
58 SOM 78 1.5 1.7 1.1 0.1 8.0

† SOM, soil organic matter.

those residuals more than 1.5 standard deviations from size for the Spearman coefficient as well. Haining (1990)
also used the correction of Clifford et al. (1989) to studythe mean. This brought the data closer to a normal

distribution as indicated by probability plots (data not the effect of spatial autocorrelation on the significance
shown). In general, a Kolmogorov–Smirnov test still of the Spearman coefficient. The p values computed in
indicated a distribution significantly different from nor- Table 5 are based on the W statistic of Clifford et al.
mal (p � 0.05), which is not surprising given the large (1989). No significance levels are attached to these val-
number of data values. Directional variogram analysis ues because they should be viewed only as rough ap-
indicated no substantial anisotropy (data not shown). proximations of the true p value. The correlation coeffi-

One of the methods we used to determine the tempo- cient between sunflower and corn may be spurious
ral structure of the data was correlation analysis. Again because a scatter plot indicated that its large value was
reflecting the observations of Jaynes and Colvin (1997), due to a relatively small number of influence points
we found that the yield data themselves were highly (data not shown).
skewed and that no suitable transformation could be Figure 7 shows the sumscore and CV of each field.
found to normalize them. Therefore, we used the Spear- There is a tendency of spatial autocorrelation between
man rank correlation coefficient to measure pairwise those areas with similar yield performance in Field 5.
correlation between crops within each field. In several The visually apparent spatial clustering was supported
cases in Field 5, the regression of yield of one crop by the result of Moran’s I and Geary’s c tests (Lee
against that of another indicated a significant quadratic
term. For example, as reported by Pettygrove et al.
(1999), the regression of tomato yield against wheat
yield is parabolic (cf. Fig. 5). In these cases, we trans-
formed the data by estimating the peak b of the parabola
obtained from a quadratic regression of crop y against
crop x and then computing the rank correlation coeffi-
cient between y and (x � b)2 (Neter et al., 1996, p. 126).
Table 5 shows the rank correlation coefficients for each
pair of crops in each field. We applied the correction
procedure of Clifford et al. (1989) to estimate the effec-
tive sample size in the presence of spatial autocorrela-
tion of the data. This procedure was developed for use
with the Pearson product moment coefficient rather
than the Spearman coefficient. However, the asymptotic
normality of the distribution of the Spearman coefficient
(Kendall and Gibbons, 1990) lends support to the idea
of using this adjustment to estimate the effective sample

Table 4. Sums of squares and p values for components of the
ordinary least-squares curve fit of a second-degree polynomial
to the percentage sand data for Fields 5 and 58.†

Field 5 Field 58

Component Sum of squares p Sum of squares p

x 85.1 0.02 1326.0 �0.01
y 1644.9 �0.01 238.8 0.87
x2 0.5 0.80 218.8 �0.01
xy 250.8 �0.01 0.3 0.88
y2 1044.8 �0.01 16.7 0.26

† The equation has the form percentage sand � a1x � a2y � a3x2 � a4xy �
Fig. 4. Medians over the short axis of the field of trend surfacesa5y2, where the values of the ai are given in the text. The variables x

and y measure position in the field in meters. obtained from median polish for each field.
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and Wong, 2001) of autocorrelation. The z value of the of a Moran’s I (z value � 46.1, p � 0.001) and Geary’s
c (0.778) tests of autocorrelation, which showed that theMoran’s I was 61.9 (p � 0.001). The estimated Geary’s

c index (0.636) also supports the conclusion that the distribution of the values of points was clustered. The
spatial and temporal patterns are much more homoge-sumscore values are positively autocorrelated. In Field

58, there is also a high visual spatial autocorrelation neous in this case, except where they are altered by a
weed infestation during the first year in the southwest-with the middle parts having higher sumscores (Fig. 7).

The visual estimation was again supported by the result ern part of the field (Plant et al., 1999). This situation

Fig. 5. Medians of the Field 5 yield trends obtained through median polish.

Fig. 6. Medians of the Field 58 yield trends obtained through median polish.
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Table 5. Spearman rank correlation coefficients, rs, of crop yields.is also reflected in the CV map (Fig. 7) where besides
N � number of data values, M̂ � effective sample size as com-a clear border effect, high variability values are found puted by the method of Clifford et al. (1989), W � Clifford et

in the southwest side of the field. The effect was that al. (1989) W statistic, and p � estimated p value of W statistic
based on standard normal distribution. Crop abbreviations: W �only 70% of the area in this field had a temporal variabil-
wheat, T � tomato, B � bean, S � sunflower, and C � corn.ity lower than the average spatial variability of the four
Relationships between other crops and wheat in Field 5 werecrop-years (CV � 21.6%, see Table 1). In Field 5, most parabolic so that rank correlation coefficients were computed

of the higher CV values (over 34%) are located close between that crop and the transformed variable (W � b)2, where
b is the value of W at which the parabola attains its peak.to the boundaries due apparently to border effects. In

the interior of the field, 65% of the area where the CV Field Crop pair rs N M̂ W p
was calculated had a value lower than 17%, which can

5 (W � b )2, T �0.47 702 15.8 �1.80 0.07
be compared with the average of the spatial variability 5 (W � b )2, B �0.51 542 26.5 �2.57 0.01

5 (W � b )2, S �0.44 563 52.7 �3.16 �0.01of the four crops (CV � 29.0%). In other words, 88%
5 T, B 0.38 473 34.3 2.19 �0.01of the area in the field had a temporal variability lower 5 T, S 0.12 495 34.2 0.71 0.5
5 B, S 0.32 492 55.9 2.37 0.02than the average spatial variability of each crop-year
58 W, T �0.06 566 113.9 �0.7 0.5(CV � 29.0%). Comparable analysis of the data in Field 58 W, S 0.07 780 50.3 0.53 0.6

58 is complicated by the existence of a dominant weed 58 W, C �0.03 780 71.4 �0.27 0.8
58 T, S 0.07 566 118.7 0.72 0.5infestation in the wheat crop. In this field, 70% of the
58 T, C �0.10 566 80.7 �0.89 0.4

area had a temporal variability less than the average 58 S, C 0.42 780 68.8 3.46 �0.01
spatial variability of the four crop-years (CV � 21.6%).

Fig. 7. Sumscore and coefficient of variation of standardized yields in each field. Each yield was standardized to its own mean and variance.
The line shows the border of the field, and different shades represent each index where data were available for the 4-yr period. A sumscore
of 100 represents the standardized mean.
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Fig. 8. Plots of the mean values of clusters of standardized yield in Fields 5 and 58 for each crop obtained by K-means clustering for K � 2
and K � 3.

In summary, Field 5 presents more spatial variability cluster set was 46.1 (p � 0.001), again confirming a
visually obvious spatial autocorrelation.within each year (average CV � 29.0%) compared with

Field 58 (average CV � 21.6%), but across years, Field 5 Correlation and forward stepwise multiple regression
analyses were performed between each crop-yield datais slightly more stable (average CV � 16.7%) compared

with Field 58 (average CV � 18.5%). set and sand, silt, and clay content; soil organic matter
(SOM); and pH (Table 6). There is an evident high levelFigure 8 shows the results of the K-means cluster

analysis of the 4 yr of standardized yields for Fields 5 of multicollinearity among predictor variables. In Field
5, sand is strongly covariant with clay and also withand 58 using two and three clusters, respectively. The

cluster analysis identified two groups that are respec- SOM. The highest coefficient of correlation with yield
determined which of the three variables (sand, clay, ortively consistently high or consistently low in yield, and

there is a decreasing dispersion from the first to the last SOM) was included in the stepwise analysis. In Field
58, silt content also showed high correlation with sandyear, graphically shown as the means of each cluster

moving closer to the average of that particular year. and SOM. Therefore, the same criterion was followed,
and silt and clay were included together in the modelIn the three-cluster division, the lower-yielding cluster

splits into two, one of which is consistently low in yield only when one of them had the highest coefficient of
correlation. The regression coefficients and variables ofand one of which varies from low to high. Figure 9 shows

the spatial arrangement of the clusters in each field. the models obtained using forward stepwise analysis
and the result from the standard multivariate analysesVisual inspection clearly indicates that the clusters are

spatially correlated. This is confirmed by the significance are contained in Table 7. In Field 5, the best fit was
obtained for wheat where a model including only clayof spatial contiguity of the clusters using Moran’s I statis-

tic, based on nearest neighbors. The z value of this explained 62% of the yield variation. For tomato and
bean, the models explained close to half of the variationstatistic for the three clusters was 61.9 (p � 0.001). In

Field 58, the cluster analysis indicated that there are in yield, with the reduced models obtained through step-
wise analysis being very close to the models includingtwo natural clusters, one of which consists of consis-

tently high-yielding areas and one of which is character- all of the variables that had no multicollinearity prob-
lems. The low R2 obtained for sunflower yield model isized by lower yields, except in the tomato year. The

three-cluster division separates a border effect from the probably due to the low spatial variability of this oilseed
crop in Field 5 (see Table 1). In Field 58, the scenarioweed infestation area that occurred during the wheat

year. The z value of the Moran’s I statistic for the three- is quite different: The spatial variability of the crop
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Fig. 9. Distribution of cluster sets of the two- and three-means cluster analysis in Fields 5 and 58. The line shows the border of the field, and
different shades represent each location where data were available for the 4-yr period.

yields was not explained very well by the measured soil determination for sumscore was not high but was higher
than for tomato, sunflower, and corn yield models.variables. Again, wheat had the highest coefficient of

determination, R2 � 0.25 for the standard regression
method, and was the only crop where it was possible to DISCUSSION
generate a model through forward stepwise regression

In general, using the net truck weights as the refer-(R2 � 0.22, including only sand content).
ence, the yield monitor overestimated crop yields, ex-Regression analyses were also performed between
cept for bean and wheat, where the latter crop wasthe sumscore and soil characteristics (Table 7). When
underestimated in both fields although in Field 58, thesumscore was used as the response variable in Field 5,

the model that includes pH, silt, and SOM explained
Table 6. Matrix of correlation coefficients between soil properties56% of the variation. The reduced model included only

measured in both fields in 1995–1996 season.
SOM, and it still explained 44% of the 4-yr average

Field Variable pH Sand Clay Siltyield (sumscore). Because the sumscore could be calcu-
5 Sand �0.02lated only where data were available for the four crops,
5 Clay 0.16 �0.93the number of observations is lower (43 points) and 5 Silt �0.36 �0.30 �0.06
5 SOM† �0.49 �0.65 0.53 0.42basically represents the bean year, which was the year
58 Sand �0.04with the least complete data set (Fig. 2). The regression
58 Clay 0.12 �0.74

model for sumscore in Field 58 (R2 � 0.16) was obtained 58 Silt �0.08 �0.66 �0.02
58 SOM �0.18 �0.69 0.50 0.47using the 60 soil samples that matched locations where
† SOM, soil organic matter.yield data for all 4 yr was available. The coefficient of
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Table 7. Variables and regression coefficients of models obtained through forward stepwise and standard regression analyses to explain
crop yields.

Forward stepwise Standard regression

Field Crop Variables N R2 Variables N R2

5 Wheat Clay 86 0.62 pH, silt, clay 86 0.63
5 Tomato Clay, silt 86 0.46 pH, silt, clay 72 0.45
5 Bean SOM† 56 0.48 pH, silt, SOM 56 0.49
5 Sunflower None 74 – pH, silt, clay 74 0.15
5 Sumscore SOM 43 0.44 pH, silt, SOM 43 0.56
58 Wheat Sand 78 0.22 pH, sand 78 0.25
58 Tomato None 60 – pH, silt, clay 60 0.04
58 Sunflower None 78 – pH, silt, clay 78 0.00
58 Corn None 78 – pH, SOM 78 0.09
58 Sumscore None 60 – pH, silt, clay 60 0.16

† SOM, soil organic matter.

difference was negligible (1.6%). As a standard, yield- reasonable summary of field trends. Cluster analysis was
also used to good effect by Lark and Stafford (1997)monitoring should be within 5% of the actual yield

(Pierce et al., 1997). In our case, only two out of eight and by Stafford et al. (1999) to describe yield trends.
These authors used fuzzy clustering, which is advocatedcrop-years were within that range, sunflower being the

crop that was least accurately monitored (28 and 81% for soil studies by Burrough (1989). We used the stan-
dard, or crisp, version of clustering. While perhaps notdifference in Field 5 and Field 58, respectively). This

indicates that yield monitoring, when done commer- providing the same level of detail as fuzzy clustering,
ordinary clustering is considerably simpler to implementcially, does not necessarily provide an accurate estima-

tion of total yield. Our analysis is based on the assump- and appears to have much to recommend it.
We argue that in some sense, cluster analysis may betion (which we cannot prove) that the spatial pattern

of yield indicated by the yield map reflects that of the a more natural indicator of spatiotemporal pattern than
correlation and regression analysis. Both methods beginactual field. The yield maps indicate a high level of

short-range variability, at least some of which may be with an aspatial analysis in which data are studied cell
by cell with no consideration of the spatial arrangementsdue to yield monitor error.

These laser-leveled, fully irrigated fields both showed of the cells. Both methods can be subjected to hypothe-
sis testing but in different ways. Correlation analysisa relatively high level of temporal structure. This is in

contrast to the situation commonly found in the rainfed, makes no use of spatial structure but rather considers
the relation between yields in each individual land areaunleveled systems of the Midwest, in which temporal

variation often dominates spatial variation (Eghball and (or grid cell) separately. Spatial autocorrelation be-
tween grid cells acts to confound the analysis and reduceVarvel, 1997). The two fields studied represent an inter-

esting contrast in that one is characterized by a strong the level of significance of the test. Cluster analysis, on
the other hand, first sorts the grid cells in an aspatialspatial trend in texture over a portion of its extent (and

virtually no trend over the other portion) while the other manner into groups on an ordinal scale. Hypothesis
testing can then be used to determine whether thesefield is characterized by a milder trend over its entire

range. Intuitively, one would expect a higher level of groups have a significant spatial structure (Cliff and
Ord, 1981). In some ways, this may be a closer approxi-temporal structure in the area of greater spatial struc-

ture. In other words, one would expect temporal stabil- mation to the way a farmer would think about the field.
The farmer might not think of individual small areasity to be connected with a high level of spatial variability

in soil texture. To some extent, this is born out by the and how they relate to each other on an interannual
basis but rather might classify areas of the field as goodresults. The plots of yield and sand content trends ob-

tained by median polish indicate the strongest relation- yielding, poor yielding, etc., and then consider the spa-
tial arrangement of these areas. Moreover, if the clustership, albeit still characterized by a high level of variabil-

ity, in the region of greatest soil texture trend. Visual groups do have substantial spatial structure, they may
provide a first step to the delineation of managementcomparison of the trends in yield and sand content also

indicates a considerable deviation, and it is clear that a zones for site-specific farming.
Our results support the idea that data collection atbiological interpretation of the two-component model,

as suggested in the introduction, requires further analy- the high level of resolution provided by devices such as
yield monitors (as well as technologies such as remotesis of other cases.

Consistent with the results of other investigators sensing and bulk electrical conductivity measurement)
has a scientific utility beyond developing a SSM strategy(Jaynes and Colvin, 1997; Lamb et al., 1996, 1997; Sadler

et al., 1995, 1998), the correlation coefficient between for a particular field. It permits the testing of scientific
hypotheses in commercial fields using a method otheryields in different years is generally low, even in cases of

seemingly obvious dominance of a soil trend. However, than replicated field trials. The data may be studied
using observational methods more commonly employedafter standardizing and then averaging yields across

time, the resulting values (which we called the sumscore) by ecologists and epidemiologists. Such methods may
open the way to a greater ability to carry out meaningfulindicated both a visual and statistically significant spatial

autocorrelation. Cluster analysis also seemed to give a agronomic research in commercial fields.
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