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SIMULATION OF WITHIN–FIELD YIELD VARIABILITY IN
A FOUR–CROP ROTATION FIELD USING SSURGO
SOIL–UNIT DEFINITIONS AND THE EPIC MODEL

J. F. Perez–Quezada,  J. Cavero, J. Williams,  A. Roel,  R. E. Plant

ABSTRACT. Soil data were collected from a 30 ha commercial field using a 60 m sampling grid. Monitored yield data were
also collected in this field between 1996 and 1999, when it had a wheat–processing tomato–bean–sunflower crop rotation.
A comparison between SSURGO–NRCS soil–unit definition and field–measured soil data showed that in this field the former
are a good approximation and starting point for precision agriculture studies and management. In a second test, the EPIC
model, using the SSURGO database soil type definitions, was found to reproduce the yield variability within this field with
reasonable accuracy. The model’s performance was not as good when tested with data from soil samples, apparently due to
the way EPIC simulates water holding capacity from texture information and the lack of some key variables (not sampled),
such as water content at field–capacity (FC), wilting–point (WP), and soil saturated conductivity. A set of runs was performed
to simulate the yield at 13 point–locations in the field using FC, WP, and bulk density. Although the accuracy of the simulation
did not improve greatly, the model reproduced the yield trend of two of the crops (wheat and sunflower).

Keywords. EPIC model, Management zones, Precision agriculture, Spatial variability, SSURGO data, Temporal variability.

omputer modeling can be used to address many
questions that would need a great expenditure of
resources to test experimentally. The Erosion–
Productivity Impact Calculator (EPIC) cropping

systems model (Williams et al., 1984) simulates conditions
of weather, irrigation, fertilization, tillage, and management
at the field level. EPIC has been tested for the study of
complex crop rotations in southern France (Cabelguenne et
al., 1990), simulating growth and yield of corn, grain
sorghum, sunflower, soybean, and wheat. After calibrating
and validating the model with two years of data, Cabelguenne
et al. (1990) concluded that EPIC was able to simulate
complex rotations with acceptable accuracy. Although this
was not a replicated experiment, it attempted to measure the
accuracy of the model’s predictions by using 28 pairs of plots
that were coincident in terms of year of harvest, crop,
preceding crop, and input level. Among these comparisons
between field research plots, 85% had yields within 20% of
each other. When computer simulations were compared with
measurements of yield, 81% of the simulated yields were
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within 20% of the observed yields (76 plot–years were
analyzed).  They concluded that EPIC was almost as good a
predictor of plot yield as the yield of a similar (paired) plot
in the same experiment.

Bryant et al. (1992) used EPIC to measure yield response
of corn to changes in irrigation timing, finding that it was not
only able to simulate the effect of total amount of water but
also the effects of the distribution of irrigation events. Their
results after simulating three years of data showed coeffi-
cients of determination between the observed and simulated
yields that ranged from 0.72 to 0.86. The authors were able
to improve the highest value to 0.91 by changing a parameter
that simulated the effect of a hailstorm. This indicates that the
EPIC model is very versatile but also that many years of data
may be needed to get a calibration that adequately accounts
for the variability caused by climatic conditions from year to
year. EPIC has not been considered as necessarily providing
an accurate simulation of a particular crop in a given field and
a given year (Steduto et al., 1995).

Working under research station conditions, Cavero et al.
(2001) sampled intensively a 27 � 27 m field, measuring
bulk density, infiltration rate, and soil texture at 91 points.
Soil water retention at wilting point, field capacity, and soil
depth were measured at 100 points. The advance and
recession time of an irrigation front (which when combined
define the irrigation opportunity time) and soil surface
elevation were measured at 361 points. Corn yield measure-
ments were made in 73 1.5 � 1.5 m areas. Cavero et al. (2001)
found that when they used the estimated values of irrigation
depth at each location as input to the EPICphase crop model,
the best correlation with the measured yield variability
occurred when they used only the spatial variability of
infiltration rate (leaving opportunity time fixed), obtaining a
coefficient of determination of 0.51. EPICphase is a modifi-
cation of EPIC, especially improved for water and N stress
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modeling (Cabelguenne et al., 1999). As a second approach,
Cavero et al. (2001) used the simulated irrigation depth at
each location obtained with the irrigation model B2D (Playan
et al., 1996) considering the spatial variability of the
infiltration rate and of the surface elevation within the field
as inputs for the EPICphase crop model. Unexpectedly, the
authors obtained a slightly better match between observed
and EPICphase calculated yield with the simulated infiltra-
tion depth than with the measured depth. As the authors
explain, this may be due to the fact that the simulated
irrigation depth value with the B2D irrigation model was the
result of averaging nine nodes within each yield sampling
area, whereas the estimated irrigation depth was derived
from only one point measured within the yield sampling area.
These results, although not spectacular, show the possibility
of predicting within–field yield variability by using simula-
tion models.

To address the spatial variability at national and regional
scale, Priya and Shibasaki (2001) developed a “Spatial
EPIC” model to simulate crop yield in India. They also
proposed a methodology for generating fine–resolution data
from the coarse–resolution data available at the national and
regional scale. With an addition of dynamic adaptations, this
model generates simulations on a pixel–by–pixel basis
following a row and column sequence with multiple soil,
climate,  and management information provided in the form
of geographic information system layers.

There have been relatively few studies of the ability of
EPIC to accurately simulate within–field variability in soil
properties. Since it requires greater precision, this is a more
difficult task for a simulation model than simulating typical
yield over a whole field. The capacity to accurately
reproduce yield values at the within–field scale would,
however, be useful in precision agriculture research. Of
particular interest is the capability of the model to carry out
these simulations without intensive soil sampling of the field
in question. The default for characterization of soil properties
in EPIC are the SSURGO (Soil Survey Geographic) descrip-
tions of soil units provided by the Natural Resource
Conservation Service (NRCS). There have been concerns
about the accuracy and precision of these data at the field
scale, and whether they can be useful for site–specific
farming purposes (Stermitz et al., 1998). The ability of EPIC
to simulate within–field yield variations depends on the
accuracy of SSURGO soil descriptions in representing actual
soil properties. The objectives of this study are to determine
the accuracy of the SSURGO soil descriptions in a highly
variable field and to test the ability of EPIC to simulate
within–field yield variability in a complex crop rotation.

METHODS
GENERAL CHARACTERISTICS

We carried out detailed studies of EPIC model simulations
of crop yield variability in a commercial field in the
Sacramento Valley, California, over a 4–year period, using
both the default SSURGO data and using data collected from
intensive soil sampling. According to the information
published on its website (www.ftw.nrcs.usda.gov/ssur_da-
ta.html),  the SSURGO database meets national map accura-
cy standards for soil maps throughout the U.S. As provided
by the NRCS, the digital maps resemble the original soil

survey maps at scales that range from 1:12,000 to 1:63,360.
In order to determine the accuracy and precision of the
SSURGO data for our study field, we compared the SSURGO
soil–unit definitions (the field contained three different soil
types) and the intensively sampled soil data collected in the
field prior to carrying out the EPIC simulations. We then
tested EPIC for its ability to reproduce the yield patterns
observed in the study field at different spatial scales. The map
unit of the SSURGO soil–type definition was used to
represent the scale at which growers make management
decisions. In addition, we explored the ability of EPIC to
generate yield estimations from soil data sampled at the point
level in the field.

The study area is a commercially managed field in the
Sacramento Valley, California (latitude 38� 32′ N, longitude
121� 58′ W). The climate is Mediterranean, with an average
annual rainfall of 54.7 cm, almost all of which occurs during
the winter. Summer crops are fully irrigated, and winter crops
receive supplemental irrigation, generally during the late
season. The study field is 30 ha in area, laser leveled, and is
comprised of three different soil types: Capay silty clay (Ca),
Brentwood silty clay loam (Br), and Yolo silty loam (Ya)
(Andrews, 1972) (fig. 1). Soil Survey Geographic (SSUR-
GO) database information was downloaded from the Nation-
al Resource Conservation Service website.

Soil samples were taken during the first season (a winter
wheat crop planted in 1995 and harvested in 1996) using a
60 m square grid, resulting in 86 samples at a 30 cm depth
(fig. 1). Soil characteristics measured included texture
components, pH, and soil organic matter. A set of 13 points
was chosen for a more detailed texture analysis in a
north–south transect, as shown in figure 1. Samples were
collected from this transect in 1997, from soil layers at
increasing depths from 30 cm to 1.5 m. Soil particle size was
measured using the Standard Pipette Method (USDA–NRCS,
1996). In August 2001, a set of samples was taken from these

Figure 1. Aerial photograph of the study area (30 ha) in August–1998 dur-
ing the bean crop. The polygons of black borders show the three soil types
(from the SSURGO database): Ca = Capay, Br = Brentwood, and Ya =
Yolo. The black points represent the location of soil samples, and the ar-
row and block show the transect of 13 points where more detailed mea-
surements were taken. The field measures approximately 750 m in length
and 375 m in width at the north end.
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same 13 points in order to estimate bulk density, moisture
content at field capacity and wilting point, and organic matter
content. Three samples were taken at each point from depths
of 30, 60, and 90 cm. At the time that the samples were taken,
the field was in its second year of alfalfa. This may have
altered the values of the variables measured, especially bulk
density and organic matter content; however, the primary
interest was in the relative relation between the sample points
and the representation of the yield gradient observed in this
field. The field had a wheat–processing tomato–bean–sun-
flower rotation from 1995–96 to 1999, from which yield
monitor data were available. Plant et al. (1999) provide a
detailed analysis of the wheat crop grown the first year.
Perez–Quezada et al. (2003) conducted a statistical analysis
of spatial and temporal yield patterns observed in this field
during the 4–year period. Yield data were not collected from
every point in the field during every season due to technical
problems with the yield monitor or global positioning
system. In 1998 and 1999, the grower planted a different crop
at the south end of the field, as shown in figure 1. Yield maps
were intersected with the soil sample locations to obtain the
yield estimates for each crop at each of the 86 sample points
for which data were available in that year.

ANALYSIS OF SUITABILITY OF SSURGO DATA FOR
MANAGEMENT ZONE DEFINITION

In order to test the accuracy and precision of SSURGO soil
type definition, the data of the three textural components
were used to define the soil textural classes for each of the
86 samples collected. The soil textural classes were defined
based on the percentage of textural components following the
texture triangle (Brady, 1984). These were compared with the
NRCS definition (Andrews, 1972). To be able to map the
texture defined from soil samples, K–means cluster analysis,
with the value of K set to 3, was used to obtain the three most
distinct soil types based on texture. K–means clustering is an
algorithm based on the square error clustering method (Jain
and Dubes, 1984), in which each sample is assigned to one of
the clusters, so the variance within groups is minimized and
the variance between groups is maximized. The K–means
clustering process was carried out using the values of soil
sand, silt, and clay content without considering spatial
information. Cluster analysis represents a mathematical
algorithm that reproduces the methodology that was original-
ly used to define these soil types in the sense that it identifies
groups so as to maximize between–group differences and
minimize within–group variation (Andrews, 1972).

To test the coincidence of SSURGO data with yield, the
wheat data were selected as the most complete data set. The
86 data points of wheat yield were re–classified into three
classes using the natural breaks scale (Robinson et al., 1984),
which creates groups by maximizing the difference between
groups and minimizing the difference within groups. This is
the same basic idea as K–means cluster analysis but works
with only one set of data, in this case wheat yield. The result
of this process was three classes of yield: low, medium, and
high. The percentage match was calculated by counting the
points whose classification coincided with the soil type
definition (Ca, Br, and Ya). We mapped the redefined soil
types in the field using a Thiessen polygon extrapolation
method (Robinson et al., 1984). Geographic data analysis
was carried out using ArcView and ArcInfo software (ESRI,
Redlands, Cal.).

EPIC SIMULATIONS
Version 8120 of the EPIC model (Williams, 1995;

Williams et al., 1984) was used for all simulations. Average
weather data were obtained from the model itself and
consisted of data from Sacramento, which is the weather
station nearest (35 km) to the study field available in the EPIC
database. These values were used only when detailed data
were not available or when the random weather generator
was used. Detailed weather data were obtained from the
University of California Statewide Integrated Pest Manage-
ment Project database. Two different files were created from
the Winters station, which is located 5 km from the field. One
contained 5–year data for the study period (1995–1999), and
a second contained data for eight full–rotation periods from
1955 through 1994. The 5–year file was used to calibrate the
model, and the 40–year file was used to simulate long–term
behavior. The 5–year file contained data on solar radiation,
maximum and minimum temperature, rainfall, relative
humidity, and wind velocity, whereas the 40–year file
contained only temperature and rainfall information. In the
latter case, EPIC estimated the missing variables from the
average values or from other existing variables.

Characteristics  of the three soil types were obtained from
the MUUF program (Baumer et al., 1994). This program is
a database of NRCS soil types that gives output in EPIC
format, which may then be used as input to define model soil
properties. Within each soil type there is a list of possible
subtypes that are defined in terms of the soil texture in the
surface layer. A file was created by choosing the subtype
according to the texture defined by SSURGO for each soil
type present in the field. In subsequent runs, we also used
other files obtained from MUUF according to the texture
defined from direct soil sampling, and then we modified the
files using the values of the soil variables sampled. Data from
the 13 deep soil samples were used to create separate soil files
for each sampled location. These files were used in
simulations to test the ability of EPIC to function at the small
(point) scale. Crop parameter values in the model primarily
were based on default parameters contained in the EPIC
database. Values different from default EPIC data were taken
from Steduto et al. (1995) for wheat, Cavero et al. (1997) for
processing tomato, and Cabelguenne et al. (1990) for
sunflower. Management data corresponded to the grower’s
actual practices over the 4–year period.

RESULTS AND DISCUSSION
ANALYSIS OF SSURGO DATA SUITABILITY FOR
MANAGEMENT ZONE DEFINITION

Table 1 gives the basic statistics of the soil traits measured
in the field in 1995. Among the textural components, silt
showed a small variation (CV = 6.3%), whereas sand showed
the highest within–field variability (CV = 26%). The pH
values were consistent over the field (CV = 2.1%) and were
not considered for the cluster analysis to determine the three
most distinct soil types. Although organic matter content
varied more (CV = 17.3%), its inclusion in the cluster
analysis did not change the final result. When the textural
class was calculated for each of the 86 points and compared
with the SSURGO soil type definition, the percentage of
matching points was very low (2.3%) (table 2). However, if
we considered the textural classes defined by SSURGO to be
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Table 1. Basic statistics of sampled soil variables for 0–30 cm depth.
Variable N[a] Average Max. Min. SD CV (%)

pH 86 5.8 6.0 5.6 0.1 2.1

Sand (%) 86 25.3 44.6 17.3 6.6 26.0
Clay (%) 86 37.3 41.5 23.2 6.3 16.8
Silt (%) 86 37.5 42.8 30.8 2.4 6.3
OM[a] 86 2.0 2.5 0.8 0.3 17.3

[a] N = Number of sample points.
[b] OM = organic matter.

clay, clay loam, and loam for Capay, Brentwood, and Yolo,
respectively, the percentage of matching points increased to
(80.2%) (table 2).

Figure 2 shows the relationship between soil classes as
defined by SSURGO and by the cluster analysis. The
correspondence between the spatial distribution of soil types
as defined by SSURGO and by the cluster analysis is
reasonably good. However, the textures as computed based
on the soil triangle are different from the ones defined by the
NRCS classification. The area originally mapped as Yolo was
found to have a predominantly loamy texture, instead of silty
loam. The Brentwood area had a predominantly clay loam
texture, instead of silty clay loam. The Capay area was
subdivided into two different textures, clay and clay loam.

In summary, soil definition from SSURGO at the field
level was found to be fairly accurate in delineating zones
spatially, but not in defining soil types according to their
measured textural composition. The failure of the SSURGO
soil type definitions to match the textural classes obtained
through soil sampling may be due to the fact that the soil
sample textural classes were based on points obtained from
a single field. The cluster analysis may have yielded a
different result if it were based on samples obtained on a
landscape level basis, matching the extent of the original soil
map.

Table 2 also shows the correspondence of SSURGO soil
type with a subdivision of wheat yield into three classes by
the natural breaks method. In this instance the correspon-
dence was fairly good (82.5%). Our results are not consistent
with those of Stermitz et al. (1999), who used SSURGO maps
to predict yield response in eight highly variable fields in
north–central Montana. They found that the maps did not
explain the within–field yield variability and that the
description of yields did not improve when reported by soil
unit. It is not unexpected that the accuracy of SSURGO
information when used in this context would be highly
location specific, nor that the optimal conditions for
application of SSURGO data would be a highly controlled
Mediterranean environment cropping system, such as that
found in California’s Central Valley.

EPIC SIMULATIONS
Table 3 contains the basic statistics of the yields observed

in the 4–year period along with crop–related factors that were
measured during the first year of the experiment (the wheat
year). Each of the factors (stand, weed level, and disease
level) was estimated visually on a scale of 1 to 5 at each
sample point by an expert agronomist. Wheat stand is a
measure of crop density. Disease level is a visual measure of
leaf symptoms. Table 4 gives the summary yield statistics for
each crop when the data are stratified by SSURGO soil type
(fig. 1). The trend of increasing yield toward the southern end
of the field can be observed in the table.

Table 5 summarizes the results of the simulations (S1 to
S5) in EPIC for the four crops using the 5–year file. The first
three rows contain the measured median yield values over
each soil type for each crop (the median was used because of
its lower sensitivity to extreme values than the mean). The
distribution of yield values at points within each soil
classification at which data were collected, extracted from
yield monitor data as described in the Methods section, were
used to test the accuracy of the simulation. The probability
values shown in the table correspond to the results of the sign
test (Steel and Torrie, 1980), a non–parametric test of the null
hypothesis that the median of the distribution of yield values
from which the samples were obtained is equal to the
simulated yield value.

In simulation 1 (S1), the original crop–parameter file from
EPIC was used, along with the soil files obtained from
MUUF, according to the texture classification from Andrews
(1972). The simulated yield values are reasonably similar to
the observed ones for the Capay soil. However, for this soil
type, the only crops that had simulated yield values not
significantly different from the observed were wheat and
bean. Bean also had a good result in Brentwood soil. There
was no difference between the simulated values of Brent-
wood and Yolo, whereas the observed median wheat yields
were 46% higher than the simulated values in Yolo. This
suggested that the model was not able to reproduce the yield
variability observed from two soil types of loamy texture
(silty clay loam for Brentwood and silty loam for Yolo).
When analyzing the results by crop, the best match between
observed and simulated yields was that of bean. There are no
data for beans in Yolo soil in 1998 and 1999 because, as
mentioned in the Methods section, the cooperating farmer
planted a different crop in that portion of the field (fig. 1). The
simulated yields for the 1998 and 1999 crops in Yolo soil are
reported to help determine the model’s ability to generate
variability between soil types. The results of S1 for all four
crops are graphically represented in a box and whisker plot
in figure 3. This figure shows that, for example, the value
simulated for tomato in Capay soil, although significantly
different from the median, was a fairly good approximation,
given the data distribution. Similarly, other results fall within
the range of observed data.

Table 2. Number and percentage of matching points of textural class and wheat yield in the study field.

Trait Sample SSURGO
SSURGO

Reclassified
Match

(points) Total
Match

(%)

Texture[a] C, CL, SIC, L SIC, SICL, SIL –– 2 86 2.3

C, CL, SIC, L –– C, CL, L 69 86 80.2

Yield Low, Med, High Ca, Br, Ya[b] –– 71 86 82.5
[a] C = clay, L = loam, CL = clay–loam, SIC = silty clay, SIL = silt loam, SICL = silty clay–loam.
[b] Ca = Capay, Br = Brentwood, Ya = Yolo.
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Figure 2. Soil type reclassification (from cluster analysis) using soil sam-
ple data of sand, silt, and clay content. Square polygons were constructed
from sample points using Thiessen polygons: C = clay, CL = clay loam, and
L = loam. SSURGO soil types (regions defined by thick black lines) are
Capay (Ca), Brentwood (BrA), and Yolo (Ya).

In S2, the only change from S1 was that the soil files taken
from MUUF were selected according to the texture defined
from the soil samples obtained in the field (table 5). The area
originally mapped as Capay silty clay actually contains clay
soil according to the soil texture triangle (fig. 2). Changing
soil types did not improve the performance of the model in
any of the crops. Indeed, the simulation of wheat in Capay
became significantly different from the median value
(2.7 tons/ha in S2 vs. 2.2 tons/ha in S1). In the Brentwood
soil, the silty loam texture was not available from MUUF so
the soil file for silty clay loam was used, and for this reason
the values do not change from the previous simulation (S1).
In Yolo soil, the texture was changed to loam, according to

the reclassification discussed above (fig. 2), but again this did
not improve the performance of the model, except for wheat,
which became differentiated from Brentwood, but only
slightly. These simulations suggest that the yield response of
the EPIC model is not highly sensitive to changes in the
parameters defined by soil texture.

In S3, the soil files from S1 were modified using
information from the soil samples. This information was
texture, pH, and soil organic matter. This change was initially
made using the average values of each sampled variable. The
results of using the updated soil files (denoted Capay–up,
Brent–up, and Yolo–up) showed no difference from the S1
results, which confirmed that these variables do not have an
important effect in EPIC on the yield simulation, at least in
this case. To further test sensitivity to texture, pH, and organic
matter, the extreme measured values of each parameter were
tested in a simulation. Field observations indicated a
relatively constant silt level in the field (Plant et al., 1999),
so in the tests silt was maintained constant while either sand
or clay was adjusted to its maximum possible value. No
change in simulated yield was observed, nor was any
observed when pH or organic matter values were varied.
Tests using the same procedure but adjusting the values of
other parameters such as water content at wilting point (WP),
field capacity (FC), and saturated conductivity (SC) indi-
cated that these parameters have a large effect on the
simulated yield.

Based on the observations reported in the previous
paragraph, in S4, the values of FC and WP were removed
from the soil files used in S3 (the updated values) to allow the
model to estimate FC and WP from the texture information.
The only change in simulated yields between S3 and S4 was

Table 3. Basic statistics of yield (kg/ha) and yield–related parameters (only for wheat) from the same locations where soil samples were taken.
Wheat
Yield

(kg/ha)
Stand[a]

(wheat year)
Weeds[a]

(wheat year)
Disease[b]

(wheat year)

Tomato
Yield

(kg/ha)

Bean
Yield

(kg/ha)

Sunflower
Yield

(kg/ha)

Average 3065 3.1 2.9 2.1 56723 1468 2064

Minimum 1417 2.0 1.0 1.0 27374 850 1613
Maximum 6728 5.0 5.0 3.0 105443 2073 2893

SD 1356 0.7 1.2 0.7 14258 328 190
CV (%) 44.3 22.5 40.7 33.7 25.1 22.4 9.2

Moisture (%) 11 94 9 9
[a] Observational rating of plant (stand) and weed density: 1 = low, 2 = med–low, 3 = med, 4 = med–high, 5 = high)
[b] Disease rating: 0 = 0%, 1 = 0%–3%, 2 = 4%–14%, 3 = 15%–29%, 4 = 30%–49%, 5 = necrosis flag/penult leaves.

Table 4. Basic statistics of crop yield (kg/ha) within each soil type, using data from the same locations where soil samples were taken.

Soil Type Crop N[a]
Median
(kg/ha)

Mean
(kg/ha)

Min.
(kg/ha)

Max.
(kg/ha)

SD
(kg/ha)

CV
(%)

Capay Wheat 50 2187 2232 1417 3830 476 21.3

Tomato 36 45750 45737 27374 63350 8063 17.6
Bean 50 1490 1421 850 2073 308 21.7

Sunflower 50 2000 2033 1613 2893 198 9.8

Brentwood Wheat 27 3879 3688 1436 6005 1045 28.3

Tomato 27 69441 69732 54353 105443 9512 13.6
Bean 6 1925 1858 1404 2059 231 12.5

Sunflower 24 2050 2130 1774 2461 157 7.4

Yolo Wheat 9 5728 5823 4837 6728 636 10.9

Tomato 9 63235 61638 42851 71429 9181 14.9
Bean 0 –– –– –– –– –– ––

Sunflower 0 –– –– –– –– –– ––
[a] N = Number of sample points.
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Table 5. Results of EPIC yield (t/ha) simulations of a four–crop rotation in three different soil types within a field.[a]

Simulation Weather
Crop
File[b] Soil File Wheat p[c] Tomato p Bean p Sunflower p

Capay 2.2 –– 45.7 –– 1.5 –– 2.0 ––

Median Observed Yield Values: Brentwood 3.9 –– 69.4 –– 1.9 –– 2.1 ––
Yolo 5.7 –– 63.2 –– – –– – ––

S1 5–year O Capay SIC 2.2 0.672 41.7 0.004 1.5 1.00 2.5 0.000

5–year O Brent. SICL 4.6 0.006 45.0 0.000 1.7 0.219 2.6 0.000
5–year O Yolo SIL 4.6 0.004 45.0 0.039 1.7 –– 2.6 ––

S2 5–year O Capay C 2.7 0.000 40.0 0.000 1.5 1.00 2.6 0.000

5–year O Brent. SICL 4.6 0.006 45.0 0.000 1.7 0.219 2.6 0.000
5–year O Yolo L 4.7 0.004 45.0 0.039 1.7 –– 2.7 ––

S3 5–year O Capay–up 2.2 0.672 41.7 0.004 1.5 1.00 2.5 0.000

5–year O Brent–up 4.6 0.006 45.0 0.000 1.7 0.219 2.6 0.000
5–year O Yolo–up 4.6 0.004 45.0 0.039 1.7 –– 2.6 ––

S4 5–year O Capay–up 4.6 0.000 45.0 0.618 1.7 0.000 2.6 0.000

5–year O Brent–up 4.7 0.002 45.0 0.000 1.7 0.219 2.6 0.000
5–year O Yolo–up 4.7 0.004 45.0 0.039 1.7 –– 2.6 ––

S5 5–year C Capay–up 2.7 0.000 70.0 0.000 1.5 1.00 2.4 0.000

5–year C Brent–up 5.2 0.000 76.7 0.000 1.7 0.219 2.7 0.000
5–year C Yolo–up 5.2 0.180 76.7 0.004 1.7 –– 2.7 ––

S6 40–year C Capay–up 5.4 0.000 52.1 0.000 3.2 0.000 4.6 0.000

40–year C Brent–up 6.4 0.000 61.7 0.000 3.2 0.000 5.3 0.000
40–year C Yolo–up 6.4 0.180 61.9 1.00 3.2 –– 5.4 ––

S7 40–year O Capay–up 4.5 0.000 30.6 0.000 3.2 0.000 4.6 0.000

40–year O Brent–up 5.6 0.000 36.7 0.000 3.2 0.000 4.8 0.000
40–year O Yolo–up 5.6 0.508 36.7 0.004 3.2 –– 4.8 ––

[a] First three rows contain the median values of the observed yields in each soil type.
[b] O = original; C = calibrated.
[c] p values represent the probability of observing a simulated yield difference at least this great from the observed median (sign test) if the data have the same

median as the simulated value.

Figure 3. Result of simulations 1 and 5 (dashed lines) and its location relative to the median of observed wheat yield data in different soil types.

observed for Capay soil (table 5). This change produced an
improvement in the simulation of tomato in Capay, but also
a corresponding decrease in accuracy of simulated wheat
yield. In EPIC, the available water for the crop depends on
soil water content, rooting depth, and soil properties (FC and

WP). In the case that these soil properties are not measured,
the soil water holding capacity is estimated from texture data
according to the Ritchie method (Ratliff et al., 1983). This
estimation could lead to some deviation from the real values,
but it is based on field–measured water holding capacities. In
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any case, Cabelguenne et al. (1999) demonstrated a better
simulation of crop growth and yield by improving the
modeling of water extraction capacities of the crops in EPIC.
Newer versions of EPIC have replaced the Ritchie method
with the option of using Rawls’s (Rawls and Brakensiek,
1985) or Baumer’s (Baumer et al., 1994) models, both of
which are related to organic carbon so they allow the model
to update wilting point and field capacity annually.

In S5, the crop parameter file was modified following
previously published calibrations of the EPIC model for
wheat, tomato, and sunflower. The comparison of S5 with S4
gives an indication of the sensitivity of EPIC to variety
parameters.  The calibrations were done by Steduto et al.
(1995), who worked with wheat in a Mediterranean climate;
Cavero et al. (1997), who calibrated EPIC for processing
tomato at a University of California field station less than
20 km from the study site; and Cabelguenne et al. (1990),
who calibrated the model for sunflower in southern France.
No calibration was available for bean, although some
changes were required in the crop parameter file in order to
make the model run under the conditions of this study. These
changes were to adjust the potential heat units to 1400 and to
change the maximum leaf area index to 5, similar to other
crops grown in the area (J. Williams, personal observation).
The results of simulation S5 (table 5 and fig. 3) indicate that
the calibration for wheat improved the simulation only for the
Yolo soil, whose simulated yield value (5.2 tons/ha) is closer
to the median of the observed yield than those of previous
simulations. In terms of relative difference between soil
types, EPIC correctly distinguishes Capay from Brentwood
and Yolo, although the latter two are not differentiated from
each other. Simulated tomato yield increased dramatically
(to 76.7 tons/ha), attaining a level closer to but exceeding the
observed median values. The effect of the modification of the
tomato parameters may be due to the fact that the variety of
processing tomato used by Cavero et al. (1997) was the same
as the one used by the grower in this study. In addition, the
texture of the soil used by Cavero et al. (1997) was sandy
loam, closer to the texture of the Brentwood and Yolo soils
in this study.

Simulation S6 retained all the conditions from S5 but used
the long–term 40–year weather file for temperature and
rainfall data. Simulation S7 also used the 40–year weather
file and used the crop and soil parameters of simulation S4.
The values given in table 5 represent the average of the eight
5–year rotations that were simulated. In most cases, the

simulated yield over the eight rotations was fairly consistent,
with a CV of less than 10%. The primary exceptions were
wheat in Capay soil, which had a CV of 30% in S6 and 22%
in S7. The lack of difference between the simulated yields for
Brentwood and Yolo is also present in this simulation. Crop
yields in general increased except for tomato, which was
highest in the simulation for Yolo soil. When the crop file was
set back to its default values in S7, yield estimation improved
slightly for wheat, whereas tomato yields were clearly
underestimated,  and bean and sunflower yields were overes-
timated. The eight–rotation simulations of bean and sunflow-
er were particularly inaccurate. We did not pursue the reason
for this in detail, but we speculate that it may be at least
partially due to an incorrect calculation of evapotranspiration
when data on relative humidity and wind velocity are not
available.

A more detailed simulation was carried out for wheat
because more information was available for this crop,
specifically the weed, stand, and disease levels reported in
table 3. Since the EPIC model version 8120 does not account
for the effect of weed infestation, only those points where
weed infestation level was low were considered. Table 6
gives the basic statistics of wheat yield in the three different
soils present in the field, according to the measured weed
infestation level. In Capay soil, this differentiation caused
little effect on the average yield, and the CV of the low
infested area (15.2%) is much lower than that of the highly
infested area (23.5%). In Brentwood soil, the difference
between observed average and simulated yields (869 kg/ha)
was more dramatic, and again the CV was lower for the low
infested area. The same trend was observed in Yolo soil,
where the average yield of the low infested area (6002 kg/ha)
was higher than that of the highly infested area (5465 kg/ha),
and the coefficient of variation (CV) was lower.

The field had a generally low disease level (table 3), and
the effect of disease on yield was much less than that of weed
competition (Plant et al., 1999). Therefore, disease was not
considered as a factor in the simulation. To take into account
the effect of plant density, a set of simulation runs was carried
out for each soil type, adjusting the plant density in the
parameter files and using the original soil files (as in S1). The
original (maximum) plant density of the simulation was
250 plants/m2. To approximate the effects of plant density,
this value was reduced in each soil type in proportion to the
average stand score in each soil type (at those points where
the weed score was less than or equal to 2). This resulted in

Table 6. Basic statistics of observed wheat yields (1995–1996) in different soil types, depending on weed competition level.[a]

Soil
Weed

Rating[b] N[c]
Median
(kg/ha)

Average
(kg/ha)

Min.
(kg/ha)

Max.
(kg/ha)

SD
(kg/ha)

CV
(%)

Capay All (1–5) 50 2187 2232 1417 3830 476 21.3

<2 14 2194 2257 1809 3155 343 15.2
>2 36 2170 2222 1417 3830 523 23.5

Brentwood All (1–5) 27 3878 3688 1436 6005 1045 28.3

<2 13 3882 4139 3025 6005 874 21.1
>2 14 3134 3270 1436 6005 1043 31.9

Yolo All (1–5) 9 5728 5823 4837 6728 636 10.9

<2 6 6026 6002 5125 6728 599 10.0
>2 3 5407 5465 4837 6151 658 12.1

[a] Data from 86 locations where soil samples were collected.
[b] Weed rating based on visual scale: 1 = lowest, 5 = highest.
[c] N = Number of sample points.
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Figure 4. Simulated wheat yield (dashed lines) for three different soil types relative to the median of observed yield data. Simulations used plant density
adjusted for measured values, with measurements restricted to points of low weed infestation.

plant density values of 132 plants/m2 for Capay,
157 plants/m2 for Brentwood, and 207 plants/m2 for Yolo. A
few other adjustments were also made in the crop parameter
files. The plant population parameters PPC1 and PPC2 were
changed to 125.60 and 250.95, respectively, following the
recommendation of Kiniry et al. (1992). These parameters
indicate the relationship between plant population and the
maximum LAI that can be attained. The number to the left of
the decimal point is the number of plants per square meter,
and the number to right is the fraction of the maximum LAI
at that population. Thus, with 125 plants/m2, the LAI that can
be attained is 60% of maximum, and with 250 plants/m2, the
LAI that can be attained is 95% of maximum. The maximum
root depth was set to 1.5 m, and the lower limit of soil nitrate
concentration was set to 3 ppm, according to Cavero et al.
(1998). Winter dormancy was set to 0.1 to simulate the mild
winters that occur in this area. The results of this set of runs
are given in table 7, and figure 4 shows their position relative
to the median yield, measured in those sampled locations that
had low weed infestation (score < 2). Comparison of these
results with those of simulations 1 and 5 (table 5 and fig. 3A)
indicates that the use of weed infestation information
improved the ability of EPIC to simulate yield differences
between Capay soil (2.5 t/ha) and the other two soil types
(table 7). It also differentiated Brentwood (5.6 t/ha) from
Yolo (5.9 t/ha), although this difference was not as large as the
measured value (fig. 4).

The EPIC–simulated yields are based on the effect of five
types of stress: temperature, aeration, water, nitrogen, and

Table 7. Observed and simulated wheat yields (t/ha) and total number
of days of stress, using crop density values adjusted to approximate

the median measured values in each soil type.
Yield (t/ha) Stress (days)[a]

Soil Type Obs. Sim. WS NS PS TS AS

Capay SIC 2.2 2.5 5 0 0 9 101

Brent. SICL 3.9 5.6 1 6 0 19 16
Yolo SIL 5.7 5.9 1 0 0 21 20

[a] Stress types: WS = water, NS = nitrogen, PS = phosphorus, TS = temper-
ature, AS = aeration.

phosphorous. EPIC calculates the number of days during the
course of the season at which the level of each of these factors
is sufficiently different from optimal to reduce yield. The
calculated numbers of days of each type of stress for the
wheat simulation are shown in table 7. Temperature and
aeration stresses were responsible for the increased differ-
entiation of simulated yields for each of the three soil types.
The other types of stress showed little difference between soil
types. EPIC failed to generate the higher aeration stress level
found by Plant et al. (1999) in Brentwood soil during the
wheat crop. Plant et al. (1999) identified aeration stress as the
primary cause of reduced yield in the wheat crop in this part
of the field.

Overall, our results indicate that the EPIC model ade-
quately reproduced observed yield variability at the spatial
scale of the soil survey map unit in this field. In the absence
of detailed information about soil properties, EPIC was able
to simulate yields adequately by estimating soil factors based
on SSURGO soil type definitions. However, inclusion of
measured soil properties in place of those obtained from
predefined soil types did not improve EPIC’s value as a
predictor of yield. This could be due to the fact that measured
water holding capacity on disturbed soil cores does not
represent accurately the field–measured limits of water
availability  (Ritchie, 1981). The results indicate that biotic
determinants such as weed infestation and crop stand must be
taken into account if one is to obtain a more accurate
simulation of yield distribution.

To test the ability of EPIC to simulate yield at a finer
spatial scale than the soil survey map unit, we carried out a
set of simulations along a transect of 13 sample points in the
north–south direction, as shown in figure 1. The direction of
this transect is that of the predominant direction of variability
in this field, which is that of its long axis, north to south
(Perez–Quezada et al., 2003). Field capacity (FC), wilting
point (WP), bulk density (BD), and textural components were
measured up to 1 m depth. Saturated conductivity was not
measured; therefore, the model estimated its value. Figure 5
shows the trend of the observed and simulated crop yields for
each of the 13 points in the transect (fig. 1). The low yield
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Figure 5. Observed and simulated yields at points along the north–south transect shown in figure 1.

values obtained for all the crops at point 6 (the sixth point
from the northern end of the transect) was apparently due to
an error in lab analysis of the soil material. It was found that
the lab measurements of FC were significantly different from
those of a blind duplication (paired t–test, P < 0.038). EPIC
is highly sensitive to changes in available water in the profile,
which is determined by FC relative to WP.

Figure 5 shows that EPIC was able to reproduce the
general trend of increasing wheat yields from north to south.
The simulated tomato yield values did not vary much, and
from points 9 to 13 they were stagnant. For the bean and
sunflower crops, the simulated values followed the same
trend as for wheat, although there were fewer observed points
in the south end of the field. Without considering point 6,
bean yield values ranged from 1000 to 1600 kg/ha, which is
a good approximation compared with the observed range of
900 to 2100 kg/ha. In the case of sunflower, simulated yields
ranged from 1400 to 2500 kg/ha, which is in good agreement
with observed yields of 1900 to 2300 kg/ha, if point 6 is not
considered.

CONCLUSIONS
In the field in which these tests were carried out, soil

definitions from SSURGO were found to be relatively
accurate in defining the spatial extent of yield zones. These
definitions were not precise in delineating soil types
according to their textural composition, although they were
very similar and reproduced the spatial trend. Working at the
field level, our results indicate that SSURGO data may be a
good source of information for the researcher for planning
either a management trial or directed sampling as part of a
site–specific research project. They may also be useful to the
commercial  grower as a basis for organizing a site–specific
crop management strategy.

The EPIC model was found to be a generally good tool to
reproduce the yield variability within this field, using the
SSURGO soil type definition. When weed infestation
information was considered, the ability of EPIC to distin-
guish between wheat yield level of the Capay soil and that of
the other two soils improved, although it was still difficult to
differentiate between Brentwood and Yolo soils. The perfor-
mance of the model was not as good at reproducing yields

when tested with soil data from sampled locations in the field.
Proper calibration of the soil variables water content at field
capacity and wilting point was identified as a key component
of the modeling process. Saturated conductivity was also
found to have a strong effect on the simulations, although its
measurement is more complex. Attempts to simulate long–
term average yield behavior were considerably less success-
ful, possibly due to the inability of the model to accurately
simulate meteorological data when these data are not
available as model inputs. Our results suggest the possibility
of using SSURGO data and the EPIC model to assess the
intra–field yield variability in areas where multi–crop
rotations are used.
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